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Abstract. We propose a reversible and local rule that allows large-scale objects called 
‘strings‘ to move with adjustable speed and energy in a three-dimensional space. We show 
that the motion of these strings is governed by discrete Hamiltonian equations and mediated 
by one longitudinal and two transverse sound waves that propagate along the string. This 
rule is a first attempt to model a solid body with a cellular automaton. I t  also provides 
interesting possibilities for simulating new physical situations. 

1. Introduction 

In the past few years cellular automata ( C A )  have received a great deal of attention, 
due  in part to their ability to model various physical situations. It turns out that, in 
many of their recent applications (hydrodynamics [ 1-31, diffusion processes [4] or 
chemical reactions [ 5 ] ) ,  CA models deal with point-like particles that evolve on a lattice 
with very short-range interactions. 

Although many interesting problems involving point-like particles are still to be 
investigated, CA should be able to model more complex objects, in order to extend 
their range of applicability. For instance, one may want to model molecules, which 
contain just a few bounded particles, or solid bodies, which are objects composed of 
many constituent particles and  which have a coherent structure over large distances. 
To devise CA models that capture the properties of such physical systems turns out to 
be a very difficult task. Nevertheless, as a first step in this direction, we propose a 
simple time-reversible model that already contains some of the desired features, namely 
( a )  to deal with large-scale objects (i.e. objects whose size is greater than range of the 
CA rule) which can move and interact with their surroundings, ( b )  to allow these 
objects to have adjustable mass, energy and momentum, and ( c )  that these objects 
maintain their size and their integrity during the evolution: deformations are allowed 
(these objects are not rigid), but the particles composing them should not spread out 
in the entire space. 

The way we will define energy and momentum may be a matter of physical 
interpretation. For instance, it is very common to use a CA rule to describe a system 
of classical particles on a lattice and, as a result, to obtain a model of a fully discrete 
molecular dynamics. In these cases, an  interpretation in terms of classical mechanics 
seems natural. But, on the automaton, the particles are not really moving from one 
site to another. In fact, it is only the state of the sites which are modified during time, 
without any transport of matter. Accordingly, C A  should be more appropriate to model 
the propagation of a ‘vacuum excitation’ in some discrete field theory. In this case, a 
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different physical interpretation may be required. However, we shall not consider this 
last approach because there is no evidence that our model reflects such a physical reality. 

In the next section, we discuss in detail a CA rule recently studied by the author 
[6], as well as some of its extensions. An early version of this rule has been proposed 
by Margolus [7], and some of its abilities to model waves have been investigated by 
HrgovEiC [8]. The rule we will discuss in this paper models large-scale one-dimensional 
objects called ‘strings’ which can move in a one-, two- or three-dimensional space and 
which fulfil the conditions ( a ) ,  ( 6 )  and ( c ) .  We will give some examples and describe 
some mechanisms that allow for limited interactions between two strings, or between 
strings and point-like particles. 

Then we will show in section 3 that the rule which governs the evolution of our 
strings can be derived from discrete-time Hamiltonian equations. This approach 
provides a natural framework to define the physical quantities associated with the 
model and  to discuss their conservation laws. Due to the breaking of continuous time 
translation invariance, we obtain a modified expression of the energy, which turns out 
to be conserved only for harmonic potentials. 

Finally, in section 4, we discuss how sound waves are propagated through the 
string. Perfect transmission characterises the propagation inside the string while total 
reflection takes place at  the end points. In  spite of the discrete aspect of space and  
time, our rule can describe the propagation of any one-dimensional wave 4(i, t )  = 
f( i - t )  + g( i + t ) .  

The aim of this paper is to present the basic principles that govern the dynamics 
of our  string model. Applications to physical problems are proposed in section 5 and  
will be the subject of a subsequent paper in which numerical simulations will be 
considered. 

2. A cellular automata rule for large-scale moving objects 

Our strings are one-dimensional objects that can be thought of as chains of masses 
linked by springs. 

More precisely, a string is composed of two kinds of particles, say the white ones 
and the black ones, which alternate along a polygonal line in a three-dimensional 
cubic lattice. The end points can be either colour. 

In  order to have a simple implementation of the rule, the string should not fold 
over onto itself. Therefore, we shall give an orientation to the string by imposing, in 
the initial configuration, that consecutive particles occupy positions with an increasing 
x coordinate. This choice is obviously arbitrary, and one can also choose the orientation 
along the y and z axes. 

2.1. The rule 

The time evolution has two phases. First, the black particles are held fixed and  the 
white ones move according to the following prescription, applied independently for 
the x, y and z coordinates: the new configuration of the string is obtained by interchang- 
ing the spacings that separate the white particles from their two adjacent stationary 
black neighbours. In other words, the motion of a white particle consists of a reflection 
with respect to the centre of mass of its two black neighbour particles. More precisely, 
if q( t )  is the position of a white particle on the lattice, and q+ and q- are the positions 
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of the right and left adjacent black particles (‘right’ and ‘left’ are defined according 
to the direction of the x axis), then the new position q ( t  + 1)  of the white particle is 
given by 

q ( t  + 1) = q+ + 4- - d t ) .  (2 .1)  
Of course, this rule is only valid for a particle inside the string, which has exactly two 
neighbours. For the end points, the reflection is performed with respect to q l F a a ,  
where a is a constant vector that represents the ‘spring’ linking the particles of the 
string together. According to the above convention of sign, the x component of a 
should be positive. Furthermore, to prevent the particles from moving off the lattice, 
a has to be integer or half-integer. 

Thus, if the left end of the string is a white particle located at q (  t ) ,  its new position 
will be 

( 2 . 2 )  q i t + 1 1 = 2 ( q+ - U 1 - q ( t 1 
and, similarly, if it is the right end, its new position will be 

q ( t  + 1) = 2 ( q . _ + a )  - q (  t )  (2.3) 
where q+ and q- refer, respectively, to the positions of the particles next to the left 
end point and next to the right end point. 

These two kinds of motion are illustrated in figure 1, for the two-dimensional case 
with a = (+, 0). 

Figure 1. The string rule: during the first phase,  the black panicles a re  stationary. The 
internal white particle moves according to a n  inversion with respect to the centre of mass 
(denoted by the left cross) of its two surrounding neighbours.  The  end particle performs 
the reflection with respect to a point ( the right cross) obtained by adding the vector a t o  
the position of its nearest black neighbour (here ,  a = ($, 0 ) ) .  The broken particles indicate 
the new positions reached by the white particles during this t ime step. 

The second phase of the rule is then to keep the white particles stationary, and  to 
repeat the first phase with the black ones. The alternation of the movements of the 
black and  white particles results in an overall motion of the string, as shown in figures 
2 and 3. 

As suggested by figure 2, and due to the fact that we chose the particles of the 
string to have increasing x coordinates, we call the motion along the x axis longitudinal, 
and  the motions along the y and z axes transverse. 

2.2. Mass, momentum and energy 

Mass, momentum and energy can be associated with the strings in a simple way. These 
quantities turn out to be adjustable for a given string, and are conserved during the 
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Figure 2. Typical motions of two longitudinal strings. The first one  ( a  needs exactly six 
t ime steps to cycle back to its initial configuration. Meanwhile,  it has  travelled o n e  lattice 
spacing. Therefore,  its speed is i .  Similarly, the second string ( b )  has a cycle of two time 
steps, and  its speed is 4 .  

evolution. This point will be proven in the next section on the basis of a discrete 
Hamiltonian formalism. 

In fact, we will show that the energy of a string is given by 

(2.4) 

where the index i labels the N particles composing the string, while x, y and z stand 
for their coordinates. 

1 \ - I  

E = 5 [ (x, + I - x, - a ,  + ( Y ,  + - .vi - a ,  1’ + ( z ,  + I - z ,  - a ,  1’1 
1 = l  

Moreover, the total momentum of a string is 

h - 1  

p = ; v , +  c V , + $ V N  
I = ?  

where U, is the speed of the ith particle, i.e. the distance it will travel during the next 
time step. Relation (2.5) suggests that the total mass of a string should be N - 1: 4 for 
the end points and  1 for the internal particles. 

From equations (2.4) and ( 2 . 5 ) ,  it appears that the energy and  momentum can 
indeed be adjusted by properly choosing the initial configuration of the string. The 
question is then to find the possible values of E and P a string can have, for a given 
length (or mass). As stated above, our evolution rule is valid for any set of separations 
between the particles. In practice, however, this is not true: the range of a CA rule is 
finite by definition and this constraint restricts the maximum values of the energy and  
momentum. In order to move, a particle must be able to see its two nearest neighbours. 
Due to the implicit finite range of the rule, one should impose 

dmins w t ~ l - w ~ s d m ~ x  (2.6) 

where w, stands for x,, y ,  or  z , .  Note that d,,,, and d,,, may be different for each of 
the three spatial directions. 

A natural choice would be d, , ,  = - d m d x .  However, in order to preserve the orienta- 
tion of the string and to prevent two particles occupying the same site or the string 
overlapping itself, we have to take d m , , 3  1 for the longitudinal x motion. 
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Figure 3. Motion of a string due to one longitudinal and one transverse sound wave. The 
same portion of the lattice is shown during the eight time steps that constitute the complete 
cycle. The speed of this string is V , ,  = (4 ;  -;), its mass is M = 4, its momentum is 
P =  (1:  - 2 )  and its energy is E = 1 ( a  = (3; 0)).  

It is easy to check that the condition (2.6) remains valid during the evolution when 
considering an internal particle. Indeed, the rule consists of interchanging the spacings 
that separate the particle from its left and right neighbours. On the other hand, this 
property requires the proper choice of a for the terminal particles. For instance, let 
us consider the case of the first particle of the string, whose position is 4,. According 
to (2.21, its new position 4: obeys 

4 2 - 4 ;  = 41 - 4 2 + 2 a .  

Then, assuming that (2.6) holds for q 2 - q l ,  we have 

- d,,, + 2a,. s w2 - w', =s -dmin + 2 a , .  
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In order to fulfil (2.6) again for the new position, a,, should be equal to 

aw = f( dmin + dmax). 

dmin=-dmax. 

(2 .7)  

For the transverse y and z motions, we will choose 

This yields 

a, = aZ = 0. 

The motion shown in figure 3 corresponds to a situation where d,,, = 1 ,  d,,, = 2 for 
the longitudinal motion (i.e. a, = i), and d,,, = -d,,, = 1 for the transverse one. This 
case has been implemented by Margolus on the CAM-6 [9] cellular automata machine, 
for mildly restricted initial conditions. 

With d,,, and d,,, given for x, y and z, the possible values of each component of 
the string’s momentum range between - P,,, and P,,, , where 

(2.8) 

The factor of 2 comes in because only half of the particles move at each time step. 
The smallest possible variation of momentum for a given string turns out to be 

A P = l .  

Although the momentum can become very large as N increases, the speed of the centre 
of mass will always be less than or equal to (d,,x-d,,n)/2, since the total mass is 
N - 1 .  This is a consequence of the finite range of the rule, which implies a finite 
speed for the transmission of information through the system. 

Similarly, the energy (2.4) has a minimal and a maximal value which are easily 
calculated by using (2.7). We obtain, for each of x, y and z contributions 

if a is half integer 
Emin = t N - l )  otherwise 

and  

E m a x  =$(N - 1)(dmax -dmin)2* 

It should be noted that, in the particular case where d,,, = 1 and d,,,, = 2 for the x 
motion, the energy contribution due to the longitudinal mode is not adjustable but 
always proportional to the mass (E,,, = E,,, = Q( N - 1 ) ) .  

Although the above string rule is given in terms of the positions of the particles, 
it can be translated into a CA rule as soon as d,,, and d,,, are given. However, it 
turns out that, under this form, the rule takes a quite complicated expression, and  that 
no natural physical interpretation emerges from that formulation. 

2.3. Collisions 

So far, we have discussed the propagation of a single free string, i.e. one which does 
not interact with its surroundings. However, in order to have a true CA model, the 
rule should be able to deal with an  arbitrary initial condition with several strings. This 
imposes to include in the rule the links that exist between the particles forming each 
string (a particle must know which string it belongs to). Moreover, when the particles 
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belonging to different strings want to occupy the same site, or when the trajectories 
of two or more strings intersect, a collision occurs and we have to modify the evolution 
rule accordingly. Unfortunately, as we shall see, this program cannot be achieved in 
the general case with a CA, without violating some constraint. 

In addition to collisions between two strings, other situations may be of interest, 
such as the collision between a string and  a point-like particle. This would allow us 
to model the Brownian motion of a string in suspension in a fluid, or to introduce 
flexible walls and semipermeable membranes in a lattice-gas fluid. 

The idea is to consider interactions that conserve the mass, the momentum and the 
energy of the entire system. Our purpose is not to give a complete list of all the 
collisions that can occur, but rather to give the basic relations that describe the exchange 
of energy and  momentum when the motion of the particles in the string is perturbed. 

For the sake of simplicity, we shall restrict our attention to perturbations of motion 
of those particles being updated at time t ,  say the white ones. Let us denote by q,( t + 1) 
the position of the ith particle after the collision. Then, we write 

(2.9) 

where q :  is the position the white particle would have occupied if no collision had 
occurred. According to (2.1), (2.2) and (2.4), q :  is 

q , ( t +  1 )  = q : +  6, 

4 ;  = 2 ( q z - a ) - q ,  

d = 4, - I - 41 + 4, T I 

4A =2(qb- ,+U) -qk ,  

or 

depending on its position along the string. 

one can show that the variation of E and P of the string, produced by the 6, are 
Then, using the definition of energy and momentum (equations (2.4) and (2.5)), 

and  

(2.10) 

(2.11) 

where m i  = m, = &, m, = 1 are the masses of the particles and 

U: = 4: - q, ( t 

is the unperturbed velocity. 
Clearly, the right-hand sides of (2.10) and  (2.11) vanish for 6, = O .  Moreover, if 

6, =-U:, the energy variation is also zero. The reason is because it corresponds to 
leave the particle at its initial position and this, obviously, does not modify the energy. 

As a simple example, let us consider the case of two different interacting strings. 
More precisely, we shall assume that only the ith particle of the first string collides 
with the j t h  one of the second string. The conditions of energy and  momentum 
conservation imply (provided the two particles have the same mass) 

6, = -6, 

6 ; ( 6 , + u : )  = -6,.(6,+L(). 

and 
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One simple solution is 

26, = -26, = 0; - 0:. (2.12) 

If the two particles had opposite velocities before collision (i.e. U: = -U:), one way to 
satisfy (2.12) is 6, = -U: and 6, = -U;, which corresponds to keeping the particles in 
their initial positions. However, in this particular case, no energy is exchanged between 
the strings. Such an example is illustrated in [6]. 

Note that another type of collision is also possible, though it is clearly irreversible: 
when two end particles want to occupy exactly the same position, one lets them d o  
so, and then the two particles form a new particle whose mass is the sum of the 
individual masses. Since the mass of the end points is precisely half the mass of an 
internal particle, the result of this kind of collision is to produce one string which is 
the union of the two previous ones and whose mass, momentum and energy are simply 
given by the sum of the two initial masses, momenta and energies. 

A generalisation of (2.10) and (2.11) can be worked out for the case where both 
white and black particles undergo collisions during the same time step. In spite of 
this, it should be noted that, for some configurations, no collisions are possible (for 
example, when 6, is half integer). Therefore, in order to model a system of interacting 
strings, it is desirable that the particles that are allowed to interact be ‘transparent’ to 
each other when collisions cannot occur without violating the conservation laws. This 
implies that we must relax the exclusion principle (no more than one particle at a 
given site), which is not very appropriate in a realistic C A  implementation. So far, we 
have not found a tractable way of solving this problem. 

On the other hand, the problem of the interaction of a string with point-like particles 
of a lattice gas is much more simple to deal with because it is easy to make the string 
transparent to the gas particles when no collisions can take place (string particles and  
gas particles are of different nature). Moreover, equations (2.10) and  (2.11) show that 
it is indeed possible to define collisions that exchange momentum and energy between 
a string and  the particles of the two-speed HPP model proposed in [lo]. It turns out 
that a transverse string with d,,, = -d,,, = 1 is sufficient to achieve these interactions. 

2.4. Some remarks 

This string model has two main drawbacks when considering the problem of modelling 
a non-rigid solid body. First, the strings are one-dimensional objects, which is not the 
case for a solid. Second, they cannot rotate, o r  more precisely, the angular momentum 
is not conserved during the evolution. 

The generalisation to objects with more dimensions seems very difficult. So far, 
our attempts have been unsuccessful. It turns out that some properties of the strings 
are consequences of the fact that they are one dimensional. For instance, since a 
particle has only two neighbours, the reflection with respect to their centre of mass 
also gives a point of the lattice. This fact is no longer true when considering more 
neighbours. 

As far as the problem of conservation of angular momentum is concerned, some 
improvements can be made. As we shall see in the next section, the reason why angular 
momentum is not conserved is because a is not zero. Therefore, if we consider the 
case where a = 0, we have the same rule for the three spatial directions, and we obtain 
a string that can rotate, as shown in figure 4. Of course, in this case one has to relax 
the condition d, , ,  = 1 for the x motion. As a consequence, nothing prevents two 
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Figure 4. Example of motion %here the angular momentum is also conserved ( a  = ( 0 ;  0 ) ) .  
The links show the neighbours each particle i s  connected to.  By following the motion, 
one  sees that the two end  points of the strings have been interchanged after six t ime steps. 
The  mass of this string is M = 6. its momentum is P = ( 0 ;  O), its energy is E = 1 I and  its 
angular momentum about  the centre of mass is L = (0; 0; 16). 

particles from occupying the same site and  each particle has to keep track of the 
position of its two nearest neighbours. 

Hence, this version of the rule requires a much more complicated scheme of 
implementation since the exclusion principle does not hold. For this reason, it cannot 
be extended to a string of arbitrary length. However, the case where a equals zero is 
interesting because it shows that a system can rotate with a conserved angular momen- 
tum, even though the particles are restricted to moving on a square lattice. 

3. Discrete-time Hamiltonian equations 

The usual way to express a C A  rule is to write down an equation for the evolution of 
the state at each site. However, if the objects we are dealing with are interpreted as 
composed of particles moving on a lattice, it is sometimes more convenient to return 
to a description in terms of the positions of these particles, especially when they are 
distinguishable and their number conserved. As suggested by the previous section, 
within this framework, our rule has a simple form, and the definitions of physical 
properties such as centre of mass and total momentum are quite natural. Furthermore, 
we shall see that the rule can be derived from a discrete-time Hamiltonian formalism, 
which leads to the expression (2.4) for the total energy. It also gives some hints on 
how to extend our rule to higher-dimensional objects, while still conserving reasonable 
physical properties. On the other hand, the drawback of this approach is that it does 
not guarantee a finite-range rule, in opposition to the traditional description, which is 
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local by nature. These two ways of describing a system of particles can be compared 
with the Euler and  Lagrange pictures: either we focus our attention on what happens 
at a given position, or we follow the motion of the particles. 

We shall now give the proof of the conservation laws of momentum and energy 
mentioned in the previous section. For this purpose, we first write the string rule in 
a more convenient way. Using the fact that the black and white particles alternate 
along the string and move in succesive steps, the rule given by (2.1) and (2.2), can be 
cast in the following form, which makes no distinction between the particles, and  
which is manifestly time reversible: 

41(t - 1 ) - 2 q , ( r f + q , ( t +  1) = 2 ( q 2 ( t )  - 4 1 ( f )  - a )  

41 ( t  - 1) - 2% ( f )  + 4, ( t + 1) = 41-1 ( f )  - 2% ( t )  + 41-1 ( t )  

q N ( f -  1) -2q , ( t )+q , \ ( f+  1) = 2 ( q , - l ( t ) - q N ( f ) + a )  

(3.1) 

where we have labelled the particles along the string from 1 to N, as before. Actually, 
equations (3.1) are more general than the initial rule. In order to be equivalent to 
(2.1) and  (2.2), they should be completed with the appropriate initial conditions at 
times f and  t + 1 expressing that, in fact, only the white or the black particles can move 
at  a given time. However, the results we are going to derive are also valid without 
this restriction. 

In addition, it should be noted that the term ql( t )  is not necessary in these equations, 
since it shows up  with the same factor on both the right-hand side and  the left-hand 
side. We have kept it in order to make the left-hand side look like the discrete 
second-order time derivative operator. It turns out that the fact that the rule does not 
depend on q l ( r )  itself makes possible the alternating motion of the black and white 
particles. As we shall see, the consequence of this is that the particles will never be 
too far from each other. Unfortunately, this property is not satisfied when considering 
a natural extension of (3.1) to higher-dimensional objects. 

Let us now introduce the following Hamiltonian: 

where p , ,  q1 and m, are, respectively, the momentum, the position and the mass of the 
ith particle of the string. 

We now define the discrete-time equations of motion as 

and  

a H  a U ( t )  
p , (  1 )  - p , (  f - 1 )  = -- = -- 

a 41 a a (3.4) 

The only modification to  the usual Hamiltonian equations is that the time derivative 
is replaced by a finite difference. Note, however, the important fact that the time 
arguments are not the same for position and  for momentum. This ensures the time 
reversibility of the evolution, as can be seen by substituting (3.3) into (3.4). Indeed, 
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we obtain the following equation of motion: 

1 d H ( t )  
q , (  t + 1 )  - 2 g , (  t )  + q , (  t - 1)  = -- -. 

m, aq, 
(3.5) 

Now, if we choose 

m , = t m2 = . . . = 4m>v - , = mN = (3.6) 

and  

(3.7) 

equation (3.5) reduces exactly to our rule (3.1). It should be noted that, in the above 
relations, the space derivatives are the usual ones. In fact, equation (3.1) does not 
refer to a discrete space. It is just a matter of properly choosing the initial configuration 
of the string to ensure that it will stay on a lattice. As a consequence, the proof of the 
conservation of momentum has the same flavour as in the usual continuous time 
Hamiltonian formalism: we define 

,v 
P ( t ) =  c P , ( t ) .  

, = I  

From equation (3.4), we have 

(3.8) 

au 
P ( t ) - P ( t - l ) = -  -. 

I = 1  aq, 

The left-hand side of this equation reduces to zero if U is invariant under any continuous 
space translation r, as can be seen by differentiating 

U ( & ,  . . . , 4 N )  = U ( q , + r , .  . . , 4 N  + r )  

with respect to r. 
Since our  potential (3.7) clearly satisfies this property, momentum will be a constant 

during the evolution of the string. In addition, by summing (3.3) over i, we obtain the 
expected relation for the speed of the centre of mass, namely 

In a similar way, we could prove that the angular momentum L = q, x p i  is conserved 
if H is invariant under rotations. Therefore, as already mentioned in the previous 
section, our  strings can rotate when U is invariant under rotations, i.e. when a = 0. 

The problem of energy conservation is not so obvious. Indeed, time is intrinsically 
discrete and  we d o  not expect the usual proof to work. However, it turns out that for 
a harmonic potential it is still possible to associate a conserved quantity with our 
Hamiltonian, that we are going to interpret as the energy of the system. 

Let us first define the ‘kinetic energy’ T as 

(3.9) 
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(3.10) 

In  order to find out the conditions the potential should satisfy to have a conserved 
energy, we assume that U is given by a polynomial expression of the 4 , .  It is then 
convenient to write U as 

U =  uo+ U , + .  . .+ U / + .  . . (3.11) 

where U, is a constant, U ,  a linear function of the coordinates and, more generally, 
U, is a homogeneous function of order I :  

U/(PL41, . . . , P44 1 = P / U l ( 4 , ,  . . . 3 4,c 1. 
Using Euler’s relation, the U, obey 

Now, with (3.11) and (3.12), we can rewrite (3.10) as 

T (  t )  - T(r  - 1)  

1 
2 1  / 

= - - / U / (  t ) + ; /U/ (  t - 1) 

a - 
+; x ( q l ( t - l ) . - -  au,(r) 4 , ( t ) .  

/ = I  I a41 41 

(3.12) 

(3.13) 

In order to obtain a quantity that is conserved during the evolution, the right-hand 
side of this equation should be an expression taken at time t minus the same expression 
taken at time t - 1. Therefore, the double sum should vanish, at least forthe q, belonging 
to the lattice. 

To check that our potential (3.7) indeed verifies this property i t  is convenient to 
write (3.13) in a different form. First, since U ,  is a linear function, its first derivative 
is a constant that does not depend on t. Consequently, we have 

au,(t-i) = a w )  
* - 

c l l ( t )  * 
84, 

and 
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Second, U2 is a quadratic function and its first derivative is linear. Then, by symmetry, 
it is easy to show that 

= T ( t - 1 ) +  U,,+ U l ( t - l ) +  U z ( t - l ) +  1 lU,(t-1)  
/ >, 2 

Thus, when U, is zero for every 1 > 2, the total energy E can be defined as the sum of 
the potential and  kinetic energies: 

(3.14) 

This is precisely the case for U given by (3 .7 ) .  Therefore our string model satisfies 
the energy conservation law 

(3 .15 )  

Relation (3 .15 )  is then valid only for a harmonic potential U, given by the sum of a 
linear and  a quadratic expression in the coordinates. The remarkable fact is that (3.14) 
is very similar to the Hamiltonian that generated the equations of motion (3.3).  The 
only difference between E (  t )  and H (  t )  is the form of the kinetic energy, which contains 
the product p , ( t ) * p , ( t - l ) ,  instead of the usual pf( t )  term. As a consequence, the 
kinetic energy can be negative, which is not very satisfactory from a physical point of 
view. However, in the particular implementation discussed in section 2, since the 
particles only move once every two steps, the kinetic energy T always vanishes and  
(3.14) reduces to (2.4): 

E (  t )  = T (  t )  + U (  t ) .  

E ( t )  = E ( t  - 1 ) .  

E ( t ) =  U ( t ) .  

The fact that T = 0 has the interesting consequence that the particles forming the string 
cannot spread out indefinitely, because U is a constant. 

It is interesting to note that E can be rewritten in a different way when the potential 
takes the form (3 .7 ) .  For the sake of simplicity, we illustrate the point for one spatial 
dimension. By expanding the sum and rearranging the terms, we have 

N - l  N - I 
= 1 (xf+, -2x, , ,x ,+xf) -2a c ( X , + , - X , ) + ( N - ~ ) U ~  

= 1 ( x ; ? - x , + l x , - x ~ x , ~ , + x ~ ) + x ~ + x - , - x l x ~ - x , w ~ I x , w  

, = I  i = l  

4 ' - I  
7 ,  

I = 2  

- 2a ( x , ~  - xl ) + ( N - 1 )a' 
&-I  

= xI (x ,  - x2 + a + 1 [x, (2x, - X, - - x,, )]  + x , ~ ,  ( x&, - XN - I - a 
r = 2  

+ a ( x ,  - x , ) + ( N  - 1)a2 .  
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Hence, using the equations of motion (3.1), we obtain 

, = I  

\ 

=-I m,x,(r)(x,(t - 1) - 2x,( 0 + x,( t + 1 ) )  
, = I  

+ a ( x , ( t )  - x x , ( r ) ) + (  N - l ) a 2  

and finally 

1 \  
T(r)+ U ( r ) = -  C m , ( x f ( t ) - x , ( r - l ) x , ( t + l ) )  

2 , = I  

+ + a ( x ] (  f ) - x h ’ (  f)) ++( N -  1)a2 .  (3.16) 

It turns out that, for a =0 ,  this expression is similar to the energy proposed by Chen 
et a1 [ l l ]  in their CA model for waves. 

The results of this section raise the question of how to generalise equation (3.14) 
to a non-harmonic potential. One might ask whether or not a Hamiltonian-like 
formalism could be developed that would describe other discrete mechanical systems 
(a lattice-gas dynamics, for example). Although our derivation does not constitute a 
general proof, it is an indication that the answer may be negative. 

Apparently, the problem of finding the additive dynamical invariants in a discrete 
system is difficult since Noether’s theorem does not apply, and each rule must be 
investigated separately. Note that, in our case, the dynamics of the system can be 
reduced to a problem of propagation and reflection of waves (see next section). 
Therefore, the invariants can be obtained from the explicit solution. In particular, an 
invariant similar to the one Pomeau discovered [ 121 for the Q2R rule of Vichniac can 
be defined in our model, but it does not correspond to an interesting physical property. 

4. Propagation of sound waves 

It turns out that the motion of the string arises due to the transmission and reflection 
of one longitudinal and two transverse sound waves. These waves propagate along 
the string and are totally reflected at the end points. This fact will be illustrated for 
the longitudinal x motion (the same derivation applies to the transverse modes). Let 
us introduce 

A , = x , + ~ - x , - u  (4 .1)  

which describes the elongation of the ‘springs’ linking particles i and i + 1. When all 
A, are zero, the state of the string does not change. Note that A, cannot be zero for 
an implementation where a is half integer. 

In terms of A , ,  the equations of motion (3.1) are 

A , ( f +  1) - 2 A l ( t ) + A l (  r - 1) = A z (  t )  -3A,( t )  

A , ( t +  1)  - 2 A 8 (  t )  + A , ( r  - 1) = A , - , ( r )  -2A,( f )  + A , + , (  t )  

A s - i ( t +  1) - 2 A j - - l ( f ) + A & - l ( t  - 1) = A & - 2 ( f ) - 3 A N _ I ( f ) .  

(4.2) 

(4.3) 

(4.4) 
This set of equations corresponds to a new CA rule for the propagation of sound in 
the string. Although they look like the equations describing the positions of the particles 
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in the string, they have the advantage of being local for any initial configurations. 
Indeed, if we are not interested in the motion of the particles but in the spacings 
between them, the index i can just as well refer to a definite site of the CA and A, to 
its state. 

The second interesting property of this rule is that equation (4.3) admits a very 
simple set of solutions, namely 

This can be seen by direct substitution of (4.5) into (4.3). Therefore, (4.3) is not only 
a discrete version of the wave equation, it actually describes waves moving forward 
and backward with unit speed. 

However, if the string is neither infinite nor periodic, we also have to take into 
account (4.2) and (4.4). It is easy to see what happens at the end points by considering 
a pulse travelling for instance to the left, defined by A , (  t - 1 )  = A , (  t )  = 0 for all i, except 
for i = io for which A , , + , (  t - 1) = A,( t )  = A. Successive applications of the above rule 
show that the pulse is reflected with the opposite sign when it reaches the left end of 
the system. This fact suggests writing equations (4.2), (4.3) and (4.4) in a more unified 
way, by using reflection and transmission coefficients. By demanding that the two 
moving waves f(i, t )  and g(i, t )  obey 

f ( i, t + 1) = T :  -, f ( i  - 1, t )  + R :-'g( i, t ) (4.6) 
and 

g(i ,  t + l ) =  T : + , g ( i + l , t ) + R : + ' f ( i ,  t )  (4.7) 

A , (  t )  = f (  i - t )  + g ( i +  t ) .  (4.5) 

we obtain for A ) (  t )  = f (  i, t )  + g (  i, t )  
A , (  t + 1) -2A,( t ) + A , (  t - 1) 

= T ; - , A , - , + ( R : + ' +  R:- ' -2)A,+ T{+lA,+l  (4.8) 
where T:=' and R:*' respectively denote the transmission and reflection coefficients 
of a wave propagating from site i to site i * 1. In order to derive (4.8), equations (4.6) 
and (4.7) have to be completed with the usual relations (see [13], for instance) 

The values of R and T that correspond to the string motion are R = 0, T = 1 for the 
internal points, and R = -1 and T = 0 for the end points. Another interesting case (in 
fact, the complementary case) is R = 1 and T = 2, which describes a fixed end point 
and a transmitted wave in the medium this end point is attached to. In this case, there 
is no overall motion of the string, but rather an oscillation of its centre of mass. 

Intermediate cases - 1 < R < 0 and 0 < R < 1 would be interesting too, but they 
generate non-integer numbers, which is not desirable for a CA. 

Finally, we would like to emphasise that the implementation of the string rule in 
terms of black and white particles moving alternately corresponds to specific f( i - t )  
and g (  i + t ) ,  having the following properties: 

T = l + R  and R:TI - - -R:*,. 

if k is even 
if k is odd 

f ( k )  = { f k )  

if k is even 
if k is odd. 

(4.9) 

(4.10) 

The wave propagation is then simply achieved by pairing adjacent sites two by two, 
interchanging their contents and then performing the same operation on the alternate 
partition. 
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5. Conclusions 

In this paper, we have proposed a discrete mechanical model of one-dimensional 
objects that move with adjustable mass, momentum and energy in a three-dimensional 
space. This model is efficiently described by a cellular automata rule when considering 
some restricted situations, namely ( i )  a single free string that cannot rotate, ( i i )  a 
system of purely longitudinal interacting strings with dmi, = 1, d,,, = 2 ,  and such that 
the near ends of adjacent strings are all terminated by the same colour of particle: in 
this case, the interactions can only occur between the end points and the type of 
collisions described in section 2 are always possible since the end points have equal 
or opposite velocities. And finally, (iii) the case of a string interacting with point-like 
particles, like the ones of a lattice-gas model. 

Unfortunately, due to the exclusion principle inherent in a cellular automata, a 
realistic implementation of both the rotating string and a general system of interacting 
strings cannot be carried out without breaking the conservation laws of mass, momen- 
tum or energy. And even more serious difficulties arise when considering generalisations 
to two- or three-dimensional objects. Therefore, a completely satisfactory CA model 
of non-rigid moving solid bodies is still to be devised. Our approach, which is a first 
attempt in this direction, illustrate some of the typical difficulties encountered in order 
to achieve such a program. Although these difficulties are due to some fundamental 
limitations proper to cellular automata, some improvements could be made by consider- 
ing a different physical interpretation, more closely related to the nature of the cellular 
automata description. 

Nevertheless, in its present form, our model has several possible applications to 
physical problems. For instance, the possibility of having interactions between point- 
like particles and a string allows us to consider the case of a linear molecular chain 
in suspension in a fluid. One may expect that the motion of the centre of mass of such 
a chain will be described by a mobility I.L and will obey a Langevin equation whose 
parameters are determined by the interactions with the surrounding fluid. The complete 
analysis of the motion of the string is an interesting problem that will be investigated 
soon with numerical simulations. 

In relation to this problem, it should be noted that a string can be used as a 
thermometer for a multi-speed lattice gas model of a fluid: assuming a canonical 
distribution of the energy, the behaviour of the string in equilibrium with the lattice-gas 
particles provides a new way to define the temperature of the fluid. This method of 
measuring the temperature has the advantage of being in the spirit of the CA approach, 
because the thermometer is itself a part of the system, as is the case in a real experiment. 
Also, this new prescription of defining the temperature in a lattice-gas fluid may have 
some interesting theoretical implications when it is compared with the two more direct, 
but unequal, temperature scales given by the equipartition of energy and by the 
microcanonical ensemble. Moreover, this method can be used to measure a local 
temperature in non-equilibrium situations, provided the length of the string is 
appropriate. 

Furthermore, our strings provide a simple microscopic model of a one-dimensional 
solid body which can be relevant in non-equilibrium statistical mechanics. Efficient 
numerical simulations can be performed in order to study the probability distribution 
in a non-equilibrium situation, when the two extremities of a string are brought into 
contact with two reservoirs having different temperatures. Heat flow and thermal 
conductivity could be measured. 



A cellular automata model of moving objecls 1687 

In  addition to the above problems which will be discussed in detail in a forthcoming 
paper, it would be interesting to use a string interacting with a lattice-gas fluid as a 
model of a linear polymer in a solvent. Indeed, our string model is not very different 
from the models proposed to describe the dynamics of an ideal polymer [ 141. However, 
it requires us to consider only some restricted situations because our dynamics does 
not allow for loops along the string. 

Moreover, it is certainly desirable to deal with several polymers in order to simulate 
real physical situations. Although our model is not yet appropriate for considering a 
system of several interacting strings, some improvements can be realised, as suggested 
by Bar-Yam [ 15, 161. Indeed, if one focuses attention solely on the polymers and not 
on the polymer-solvent system, the only conservation law which really matters is the 
conservation of the number of particles, since the strings can exchange momentum 
and  energy with the solvent. In this case, the only constraint we are left with is to 
define a set of rules that preserve the integrity of each chain. 
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